

Isolation, Purification and Identification Of Natural Products

> Gunnar Stenhagen Stenhagen Analyslab AB Mölndal

Isolation Techniques for Natural Products

- Squeezing
- Extraction
- Adsorption
- Centrifugation
- Filtering
- Distillation
- Headspace

General scheme for sample work up

Fig. 3.31 General scheme for reaction work-up.

StenhagenAnalyslab AB

General outline for the separation of a mixture

Fig. 3.36 General outline for the separation of acidic (AH), basic (B:) and neutral (N) components of a mixture.

Extraction protocol for purification of a neutral compound

Fig. 3.37 Extraction protocol for the isolation and purification of a neutral organic compound.

Extraction protocols for purification of an **acidic** organic compound

Fig. 3.38 Extraction protocol for the isolation and purification of an acidic organic compound.

Extraction protocols for purification of a **basic** organic compound

Fig. 3.39 Extraction protocol for the isolation and purification of a basic organic compound.

Purification Techniques for Natural Products

Liquid-liquid Extraction Soxhlet Extraction Fractional Distillation Fractional Distillation under Vacuum Steam Distillation Sublimation Thin layer Chromatography Liquid Chromatography Gas Chromatography

Soxhlet Extraction

Isolation of caffeine from tea leaves using Soxhlet extractor

1. Isolation of caffeine

Place the finely ground tea leaves in the thimble of the Soxhlet extractor and arrange the apparatus for continuous extraction for 1 h with 100 mL ethanol.¹ Transfer the extract to a 1L round-bottomed flask containing the magnesium oxide and evaporate to dryness on the rotary evaporator, heating with a warm water bath.² Extract the solid residue with boiling water $(4 \times 50 \text{ mL})$, and filter the slurry with suction whilst hot in each instance. Add 12mL of 10% sulfuric acid to the filtrate and reduce it to ca. one-third of its original volume on the rotary evaporator with heating on a steam or boiling water bath. If a flocculent precipitate forms at this stage, it should be filtered off whilst the solution is still hot and the solution allowed to cool, before extracting four times with 15mL portions of chloroform. The yellow organic extracts can be decolourized by shaking with a few millilitres of 1% aqueous sodium hydroxide followed by washing with the same volume of water. Remove the solvent on the rotary evaporator and recrystallize the residue of crude caffeine from the minimum quantity of boiling water (<1 mL). Record the weight and mp of your product and obtain the IR spectrum (CHCl₂).

Tea leaves

- 1. Grinding
- 2. Extracting (ethanol)
- 3. Evaporation

Solid residue

- 1. Extracting (water)
- 2. Filtering
- 3. Evaporation
- 4. Extraction (CHCl3)
- 5. Washing
- 6. Evaporation
- 7. Recrystallizing

Distillation

Fig. 3.48 (a) Apparatus for simple distillation. (b) Microscale distillation.

Fractional Distillation

Fig. 3.50 Apparatus for fractional distillation.

StenhagenAnalyslab AB

Fractional Distillation under Vacuum

Steam Distillation

Main Chromatographic Techniques

Stationary phase	Mobile phase	Technique (substances separated)
Solid	Liquid	Adsorption chromatography (wide range of aliphatic and aromatic molecules)
		Reverse phase chromatography (polar organic molecules)
		Gel permeation chromatography (macromolecules)
		Ion exchange chromatography (charged molecules, amino acids)
Liquid	Liquid	Partition chromatography (thermally and acid labile organic molecules)
Liquid	Gas	Gas–liquid chromatography (volatile organic molecules)

Table 3.9 Main chromatographic techniques.

Thinlayer Chromatography

Fig. 3.64 Determination of the retention factor.

Thinlayer Chromatography

Fig. 3.66 Stages in the development of a two-dimensional chromatogram.

Liquid Chromatography

Fig. 3.70 Common arrangements for percolation column chromatography.

Liquid Chromatography Gradient Elution

Volatiles from Plants

Sampling of Volatiles from Plants

Sampling of Volatiles from Plants

Adsorbent Material used in Trap

Capillary Gas Chromatography

StenhagenAnalyslab AB

Capillary Gas Chromatography of Volatiles from Tomato Leaves

Fig. 1. Capillary gas chromatograms of wound-emitted volatiles. – A. L. hirsutum f. glabratum (LA 1223, 1 g of leaves). – B. L. esculentum (cv Ida, 5 g of leaves). – Numbered peaks: (1) trans-2-hexenal, (2) cis-3-hexenol, (3) α -pinene, (4) α -terpineolene, (5) α -phellandrene, (6) 2-undecanone, (7) α -copaene, (8) β -caryophyllene, (9) humulene, (10) α -curcumene, (11) 2-tridecanone, (12) zingiberene, (13) δ -cadinene. – A fused silica column, i.d. 0.31 mm × 25 m of SE-30, linearly programmed from 30° to 230°C at 5°C/min.

Sampling of Volatiles from Soil

StenhagenAnalyslab AB

Capillary Gas Chromatography

Eigenvector projection

Figure 3. Capillary Gas Chromatogram of Volatiles from Soil. Chromatographic data: adsorption: 4 h on Tenax TA; desorption: 8 min at 200°C; column: fused silica 0.3 mm, 20 m, SE33; temperature programming: 40 to 230°C at 5°C/min; carrier gas: helium (50 cm/s).

Figure 5. Eigenvector Projection (Principal Vector Plot). A plane is least squares fitted to all the data. This plane constitutes a two-dimensional window into the multi-dimensional measurement space. The projections of the object points down to the plane are visualized in this plot.

StenhagenAnalyslab AB

Determine the type of fiber you need according to the molecular weights and polarity of the analytes.

- Low molecular weight or volatile compounds usually require a 100µm polydimethylsiloxane (PDMS)-coated fiber.
- Larger molecular weight or semivolatile compounds are more effectively extracted with a 30µm PDMS fiber or a 7µm PDMS fiber.
- To extract very polar analytes from polar samples, use an 85µm polyacrylate-coated fiber.
- More volatile polar analytes, such as alcohols or amines, are adsorbed more efficiently and released faster with a 65µm polydimethylsiloxane/ divinylbenzene (PDMS/DVB)-coated fiber.
- A 60µm PDMS/DVB fiber is a general purpose fiber for HPLC.
- » For trace-level volatiles analysis, use a 75μm PDMS/Carboxen fiber.
- For an expanded range of analytes (C3-C20), use a 50/30 divinylbenzene/Carboxen on PDMS fiber.

All the elements in a diagram are color coded as follows:

BLUE is POLAR
 PALE BLUE is SLIGHTLY POLAR
 PURPLE is INTERMEDIATE POLARITY
 PALE RED is SLIGHTLY NON-POLAR
 RED is NON-POLAR

These colors represent relative polarities in a given diagram, not absolute polarities, e.g., blue is not necessarily as polar as water.

		12 SORBENT STRUCTURES
NON-POL	AR	
C18	Octadecyl	-Si-C ₁₈ H ₃₇
C8	Octyl	-Si-C ₈ H ₁₇
C2	Ethyl	−Si− C₂H₅
CH	Cyclohexyl	-Si-
PH	Phenyl	-\$i- ()
POLAR		
CN	Cyanopropyl	-Si-CH ₂ CH ₂ CH ₂ CN
20H	Diol	-Śi-CH ₂ CH ₂ CH ₂ OCH ₂ CH-CH ₂ OH OH
SI	Silica	-\$i-OH
NH ₂	Aminopropyl	-Si-CH ₂ CH ₂ CH ₂ NH ₂
PSA	N-propylethylenediamine	$-\dot{S_{i}} - CH_{2}CH_{2}CH_{2}NCH_{2}CH_{2}NH_{2}$ H
ION EXC	HANGE	
SCX	Benzenesulfonylpropyl	−Śi− CH₂CH₂CH₂ – (◯)– SO₃⊝
PRS	Sulfonylpropyl	-Si-CH₂CH₂CH₂-SO₃⊖
СВА	Carboxymethyl	-Si-CH₂COO⊝
DEA	Diethylaminopropyl	$-S_{1}^{i}-CH_{2}CH_{2}CH_{2}N_{H}(CH_{2}CH_{3})_{2}$
SAX	Trimethylaminopropyl	− Si− CH₂CH₂CH₂N-(CH₃)₃

All the elements in a diagram are color coded as follows:

BLUE is POLAR
PALE BLUE is SLIGHTLY POLAR
PURPLE is INTERMEDIATE POLARITY
PALE RED is SLIGHTLY NON-POLAR
RED is NON-POLAR

These colors represent relative polarities in a given diagram, not absolute polarities, e.g., blue is not necessarily as polar as water.

ION EXCHANGE

- YELLOW indicates significant CATIONIC interactions GREEN indicates significant ANIONIC interactions
- WATER is BLUE (polar) when it has no ions or is weakly ionic.
- BLUE with a YELLOW stripe is water with significant acidic properties.
- BLUE with a GREEN stripe is water with significant basic properties.

ION EXCHANGE

- YELLOW indicates significant CATIONIC interactions
- GREEN indicates significant ANIONIC interactions
- WATER is BLUE (polar) when it has no ions or is weakly ionic.
- BLUE with a YELLOW stripe is water with significant acidic properties.
 - BLUE with a GREEN stripe is water with significant basic properties.

All the elements in a diagram are color coded as follows:

BLUE is POLAR
PALE BLUE is SLIGHTLY POLAR
PURPLE is INTERMEDIATE POLARITY
PALE RED is SLIGHTLY NON-POLAR
RED is NON-POLAR

These colors represent relative polarities in a given diagram, not absolute polarities, e.g., blue is not necessarily as polar as water.

Large White Butterflies P. brassicae
Dual Choice chamber

Ovipositing of the Large White Butterflies P. brassicae

Cardenolides on Leaf Surface

Figure 2. A: The steam spray apparatus used to wash of the surface film of fresh leaves.

B: The spray apparatus used to wash of the surface film with organic solvents.

Fig. 1. Comparison of cardenolide contents in leaf extract and on leaf surface of *C. allionii*. Liquid chromatograms of A; 50% methanol-water extract and B; steam wash. Both samples with phenolics removed. Chromatographic column: analytical 15 cm 4.8 mm i.d., packed with 4 μ m Novapac C18 (Waters). Flow: 1.0 ml/min. Oven temperature: 60°. Detection: UV adsorption at 220 nm. Mobile phase: gradient from 10 to 40% of methanol in water in 35 min.

Ovipositing of the Large White Butterflies P. brassicae

Test fraction R_t (min)	Test leaves sprayed with fraction (no. of eggs)	Control leaves sprayed with carrier (no. of eggs)	Eggs on test leaves (% of total)
20.50	540	2931	15.6
21.80	208	3710	5.3
24.50	113	2442	4.4
25.00	58	2219	2.5
36.75	371	2431	13.2
40.15	48	3453	1.3
44.50	329	2672	11.0
46.35	167	2660	5.9
48.05	263	3237	7.5
49.06	359	2388	13.1
Sum:	2456	28143	8.0

Sum of data from six (three hr) experiments involving ten females.

Tarsal Contact Chemoreceptory

Protocol for isolation of active component

Identification of Natural Products

Identification Techniques of Natural Products

- Gas and Liquid Chromatography
- Mass Spectrometry
- UV/Vis Spectrophotometry
- IR Spectrophotometry
- NMR Spectrometry
- Roentgen Diffraction

Mass spectrometers separate ions according to their mass to charge (m/z) ratios

- 1. Quantitative information about samples
- 2. Qualitative structural information
- 3. Sensitive for a wide range of compounds
- 4. Extremely selective

Uses of Mass Spectrometry in Organic and Biological Chemistry

Application	Samples	Methods	Comment
Molecular weight determination	Pure compounds, mixtures	Recognize intact molecular ion in spectrum	Several ionisation methods can be used for confirmation
Molecular formula determination	Usually pure compounds but also mixtures by LC-MS or GC-MS	High accuracy mass measurement on molecular ion	High accuracy alone seldom gives a unique molecular formula
Molecular structure determination	Pure compounds or mixtures by LC-MS, GC-MS, and MS-MS	Spectrum-structure correlations; library comparisons	Confirmation of suspected structures is usual; de novo interpretations rare
Sequence determination	Proteins, other biopolymers	Tandem mass spectrometry (MS- MS)	Sensitive, very rapid and increasingly useful
Isotopic incorporation and fractionation	Naturally and artificially labelled compounds (¹³ C, ² H, ¹⁸ O, etc.)	lon abundance measurements	Precise isotope ratio measurements require special instrument
Quantification	Mixtures by LC-MS or GC-MS	Selected ion detection (SIR) or multiple reaction monitoring (MRM)	Sensitive and very genAnalyslab

Components of a Mass Spectrometer

StenhagenAnalyslab AB

Ion Sources

- High vacuum sources
 - Electron Ionization (EI)
 - Chemical Ionization (CI)
 - Field Desorption (FD, FI)
 - Fast atom bombardment (FAB. LSIMS)
 - Matrix-Assisted Laser Desorption (MALDI)
- Atmospheric Pressure Ionization (API)
 - Electro spray Ionization (ESI)
 - Atmospheric Pressure Chemical Ionization (APCI)
 - Atmospheric Pressure Photo ionization (APPI)
 - Atmospheric Matrix-Assisted Laser Desorption

Application range of various ion sources

High Vacuum Sources

- Electron Ionization (EI)
- Chemical Ionization (CI)
- Fast atom bombardment (FAB. LSIMS)
- Matrix-Assisted Laser Desorption (MALDI)

Ion Source for Electron Impact (EI)

Figure 3. Simple Ion Source, showing the housing (block) with electron beam for El.

EI mass spectrum of methanol

Mass spectra (EI) are routinely obtained at an electron beam energy of 70 eV. The simplest event that occurs is the removal of a single electron from the molecule in the gas phase by an electron of the electrom beam to form the molecular ion, which is a radical cation (M^{+}). For example, methanol forms a molecular ion.

$$CH_{3}OH + e \longrightarrow CH_{3}OH^{+} + 2e$$
$$m/z \ 32$$

When the charge can be localized on one particular atom, the charge is shown on that atom.

CH₃OH

The single dot represents the odd electron. Many of these molecular ions disintegrate in $10^{-10}-10^{-3}$ s to give, in the simplest case, a positively charged fragment and a radical. A number of fragment ions are thus formed, and each of these can cleave to yield smaller fragments. Again, illustrating with methanol

$$CH_{3}OH^{+} \longrightarrow CH_{2}OH^{+} (m/z \ 31) + H^{-}$$
$$CH_{3}OH^{+} \longrightarrow CH_{3}^{+} (m/z \ 15) + \cdot OH$$
$$CH_{2}OH^{+} \longrightarrow CHO^{+} (m/z \ 29) + H_{2}$$

EI mass spectrum of decan $(C_{10}H_{22})$ Mw 142

GC-MS with EI ionisation

Advantages and Disadvantages of EI

Advantage

Consequence

Reproducible method	Libraries of El allow compound identification
Extensive fragmentation occurs	Molecular structure information can be deduced
Ionisation efficiency high	Method is sensitive: 1 in 1000 molecules is ionised
Ionisation is non-selective	All vaporized molecules can be ionised

Disadvantage

Consequence

Only positive ions formed	Not ideal for all classes of compounds
Radical cations formed	Rearrangement processes complicate mass spectra
Sample must be volatile	Limited to relative low molecular weight compounds
Ionisation is non-selective	All vaporized molecules contributes to the mass spectrum
Relatively energetic (large interal energy)	Often extensive fragmentation; limits value in molecular weight determination

Chemical ionisation (CI)

CHEMICAL IONISATION (CI)

Reagent gas	Molecular ion	Reactive reagent ion
H ₂	H ₂ '+	H_3^+
C4H10	C4H3 ^{.+}	C4H11 ⁺
NH ₃	NH3 ^{.+}	NH₄⁺
CH₃OH	CH₃OH ^{.+}	$CH_3OH_2^+$
NO	NO ^{.+}	NO ⁺

Figure 4. Some types of reagent gases and their reactive ions

CHEMICAL IONISATION (CI)

Figure 5. Typical CI processes in which neutral sample molecules (M) can react with NH_4^+ to give either (a), a protonated ion (MH⁺) or (b), an adduct ion (MNH₄⁺); the quasimolecular ions are respectively 1 and 18 mass units greater than the true mass (M). In process (C), reagent ions (C₂H₇⁺) abstract hydrogen, giving a quasimolecular ion 1 mass unit less than M

Fast atom bombardment (FAB. LSIMS)

FAB (Fast Atom Bombardment) och LSIMS (Liquid Secondary Ion Mass Spectrometry)

Figure 2. Simple illustration of an instantaneous collision cascade generated as a result of primary particle impact in desorption ionization mass spectrometry.

Fast atom bombardment (FAB. LSIMS)

Matrix in FAB/LSIMS

Glycerol Thioglycerol Mix glycerol/thioglycerol

more volatile

Mix of di-thiothreitol (five parts)/di-thioerythritol (one part)

m-nitrobenzyl alcohol (m-NBA)

glycols tri-ethylenglycol tetra-ethylenglycol

tri-ethanolamine di-ethanolamine 2,4-ditertamylphenol tetra-methylene-sulphone conc. sulphuric acid

3-aminopropane1,2-diol

negative ion

also for negative ion

thiodiethylene glycol (TDEG) Mix of TDEG/glycerol organometallic comp peptide

Problems caused by chemical reactivity:

ex.: m-NBA oxidation to aldehyde under ion bombardment and reaction with analyte amino groups ex.: formation of formaldehyde from glycerol ex.: reduction of the analyte such as dyestuffs and peptides in glycerol

Fast atom bombardment (FAB. LSIMS)

Matrix-assisted Laser Desorption/Ionization

The mechanism of MALDI is not totally understood...:

The Formation of a 'Solid Solution'	The analyte molecules are distributed throughout the matrix so that they are completely isolated from one other. This is necessary if the matrix is to form a homogenous 'solid solution'
Matrix Excitation	Some of the laser energy incident on the solid solution is absorbed by the matrix, causing rapid vibrational excitation, bringing about localized disintegration of the solid solution, forming clusters made up of a single analyte molecule surrounded by neutral and excited matrix molecules. The matrix molecules evaporate away from these clusters to leave the excited analyte molecule.
Analyte Ionization	The analyte molecules can become ionized by simple protonation by the photo-excited matrix, leading to the formation of the typical $[M+X]^+$ type species (where X= H, Li, Na, K, etc.). Some multiply charged species, di- and trimers can also be formed. Negative ions are formed from reactions involving deprotonation of the analyte by the matrix to form $[M-H]^-$ and from interactions with photoelectrons to form the $[M]^{-\circ}$ radical molecular ions.

These ionization reactions occur in the first tens of nanoseconds after irradiance, and within the initial desorbing matrix/analyte cloud.

Applications and Choice of Matrix

The most important applications of MALDI mass spectrometry are: peptides and proteins, synthetic polymers, oligonucleotides, oligosaccharides, lipids, inorganics.

Numerous matrices have been found for these and other classes of compounds; a summary is given in figure.

Although electrospray ionization (ESI) is somewhat competitive and certainly complementary, MALDI remains the method of choice in several key areas, particularly proteomics. The sensitivity of ESI is reduced by the presence of salts, impurities, and organic buffers which are more easily tolerated by MALDI.

Determined molecule	Abbrev.	Product	
Peptide/protein Mass < 10 kDa Mass > 10 kDa IR-Laser UV-Laser UV-Laser UV-Laser Liquid matrix Liquid matrix	CHCA SA HABA	 α-Cyano-4-hydroxycinnamic acid Sinapic acid 2-(4-Hydroxyphenylazo)benzoic acid Succinic acid 2,6-Dihydroxyacetophenone Ferulic acid Caffeic acid Glyerol 4-Nitroaniline 	
Oligonucleotide Mass < 3.5 kDa Mass > 3.5 kDa	THAP HPA	2,4,6-Trihydroxyacetophenone 3-Hydroxypicolinic acid Anthranilic acid Nicotinic acid Salicylamide	
Synthetic polymer Non-polar Polar IR-Laser	iaa Dit Dhb	Trans-3-indoleacrylic acid Dithranol 2,5-Dihydroxybenzoic acid Succinic acid	
Organic molecules	DHB	2,5-Dihydroxybenzoic acid Isovanillin	
Carbohydrates Acidic	DHB СНСА ТНАР	2,5-Dihydroxybenzoic acid α-Cyano-4-hydroxycinnamic acid 3-Aminoquinoline 2,4,6-Trihydroxyacetophenone	
Lipids	DIT	Dithranol	
Dendrimers	SA DIT	Sinapic acid Dithranol	Stenhag
Fullerenes	SA	Sinapic acid)enA
Inorganic molecules	DCTB	T-2-(3-(4-t-Butyl-phenyl)-2-methyl-2- propenylidene)malononitrile	vnalysla
Oligosaccharide		1-Isoquinolinol	A de

Examples of MALDI mass spectra

Atmospheric Pressure Ionization (API)

Electrospray Ionization (ESI)

Atmospheric Pressure Chemical Ionization (APCI) Atmospheric Pressure Photo ionization (APPI) Atmospheric Matrix-Assisted Laser Desorption

Schematic of electrospray ionization process

N B Cech & C G Enke Mass Spectrom Reviews 2001, 20, 362

The major steps in ESI

- Formation of a Taylor cone with excess of positive charge on its surface
- Formation of charged droplets
- Shrinkage of droplets through evaporation and columbic fission (droplet disintegration into smaller droplets due to increased charge density)
- Ionization takes place in gas-phase produced by ion evaporation from small highly charged droplets

N B Cech & C G Enke Mass Spectrom Reviews 2001, 20, 362

E de Hoffmann & V Stroobant Mass Spectrom: Principles and Applications, 2nd ed, J Wiley & Sons, 1999

Electrospray ionization process

Orthogonal Spraying

The concept used by most manufactures today

Advantages of ESI

- Suitable to a wide range of polar non-volatile compounds
- Sensitive (low pg amounts)
- Soft ionization technique (gives molecular weight)
- Robust
- Accepts LC flow rates from low nl to over 1 ml/min

Atmospheric Pressure Chemical Ionization APCI

- Mobile phase and analyte are nebulized
- Droplets are vaporized
- Mobile phase molecules are ionized by electrons from the corona discharge
- Analyte molecules are ionized by the mobile phase ions
- Ionization takes place in the gas phase

APCI ionisation process

Atmospheric Pressure Chemical Ionization APCI

Compatability of API-MS with chromatography

Mode	ES	APCI	Comments
Reversed phase	+++	++	Formation of ions in solution is possible; usually limited sample volatility
Normal phase	+	+++	Ions in solution (nonaqueous miscibility) may be a problem; usually sample is volatile
Size exclusion	+++	+	Buffers to suppress nonexclusion mechanisms may cause problems; most likely sample is not volatile and is a high molecular weight
Ion pair	++	++	Reagent ions may compete for ion-evaporation process; volatility of mobile-phase additive
Ion exchange	+	÷ +	High ionic strength may be a problem; limited volatility of mobile-phase additives
Hydrophobic interaction	+	+	Uses salt gradients to elute biomolecules; salt is not compatible with API-MS
Immunoaffinity	+++	+ ·	Mobile phase often compatible with API-MS, usually nonvolatile sample

TABLE 2. Compatability of API-MS with Various Chromatographic Modes

^aA greater number of plus signs indicates a larger degree of compatibility.

Mass Analyzers

StenhagenAnalyslab AB

Quadrupole mass filter

The ion is transmitted along the quadrupole in a stable trajectory Rf field. The ion does not have a stable trajectory and is ejected from the quadrupole.

Schematic of a Triple Quadrupole Mass Spectrometer

Ion source

StenhagenAnalyslab AB

Triple Quadrupole Mass Spectrometer

MDS Sciex

Patented LINAC[™] collision cell technology The patented LINAC highpressure collision cell accelerates ions through the collision quadrupole, providing increased sensitivity at greatly reduced dwell times.

MS/MS-scan functions

- Daughter ion scan MS1 is set on parent ion mass and MS2 is scanned
- Parent ion scan MS2 is set on daughter ion mass and MS1 is scanned
- Neutral loss scan MS1 and MS2 are linked with an offset of the lost mass and both are scanned synchronized

Mass Analyzers

Time-of-flight mass spectrometry (TOF)

R J Cotter Anal Chem 1999, 445A

Bundles of ions are pulsed down the flight tube.

- 2. Ions have a velocity relative to their mass.
- Their arrival time at the detector will be relative to their m/z.

Single-stage reflectron TOF

Time of flight (TOF) mass spectrometer

- High accuracy, 0.005 mass units, 100x better than quadrupole.
- High resolution, peak width 0.05 mass units which is 10x better than a quadrupole.
- High scan speeds
- High sensitivity, though lower than SRM in a quadrupole
- Dynamic range 10³, about 10-100 times lower than for a triple quadrupole.

Q-Tof Premier ESI schematic

Attacked plants call the cops

Isolation of An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion

- Crude secretion was centrifuged
- Sterile filtering (0.22µm filter)
- Proteins precipitated and removed
- Solid phase extraction (RP18 column)
- Gradient HPLC (NP C18 column)
- Gradient HPLC (RP ODS column)
- Extraction into organic phase (methylene chloride/acetic acid/water)
- Solid phase extraction (Diol column)
- Isocratic HPLC (RP ODS column)

FAB/MS of active compound

FAB/MSMS Daughter ion mass spectra

Determination of glutamine

Determination of glutamine by adding 10µl aceticanhydride to 100 µl of oral secretion. GC/MS with chemical ionization of the product gave m/z 144 (M+H). GC/MS with El of the same product gave m/z 143, 84, 56 and 41 and was identified as the methyl ester of pyroglutamate showing the presents of glutamine

Determination of methylester of hydroxy acetic acid

The same GC/MS analyze also show a second peak in the gas chromatogram. The corresponding mass spectrum gave m/z 309 (M) and 291 (M-18) with CI. No molecular ion with EI but M-18 and a fragment pattern corresponding to a straight hydrocarbon

Elemental composition

Accurate mass measurement gave elemental composition $C_{23}H_{38}N_2O_5$. Subtraction of glutamine linked via an ester or amide bond gave $C_{18}H_{30}O_3$ as the elemental composition for the second part of the molecule.

Location of the hydroxyl group. Pyrrolidide derivatives of the fatty acid methyl esters were prepared by dissolving a sample in 10 μ l of 1% glacial acetic acid in freshly distilled pyrrolidine and heating to 100°C for 30 min in a sealed tube (Anderson, 1978). The product was cooled to room temperature, 10 μ l of CH₂Cl₂ were added, and the product analyzed by GC-MS. This derivative significantly refine the characteristic hydrocarbon MS fragmentation pattern of long chain fatty acids and was originally developed to determine the location of double bonds in the chain. It also resulted in increased intensity of diagnostic ions for the location of hydroxyl groups.

A HPLC method to analyze the acidic components of the BAW oral secretion.

To 1 ml of filter sterilized oral secretion 100 μ l acetic acid and 2 ml of CH₂Cl₂ were added. The solution was shaken for 5 min, and the organic phase was evaporated to dryness under vacuum. One milliliter of 50 mM (pH 8) sodium phosphate buffer was added and 10 μ l of the solution was analyzed on HPLC with the ODS-AQ S-5 column. UV detection at 200 nm.

FIG. 3. HPLC separation of acidic components in BAW oral secretion. The YMC ODS-AQ S-5 column (4.6 mm ID \times 250 mm long) was eluted at a flow of 1 ml/min with a gradient 40–100% solvent B in A in 10 min and then 100% B for 15 min. A = 0.05% aqueous acid, B = 0.05% acetic acid in acetonitrile. The column eluent was monitored by UV detection at 200 nm. B: Volicitin, (*N*-[17-hydroxylinolenoyl]-L-glutamine), C: *N*-[17-hydroxylinoleoyl]-L-glutamine, D: 17-hydroxylinolenic acid, E: *N*-linolenoyl-L-glutamine, **F**: 17-hydroxylinoleic acid, G: *N*-linoleoyl-L-glutamine, **H**: linolenic acid, I: linoleic acid, J: unknown unsaturated C₁₈ acid, K: oleic acid.

The End