Green Chemistry

Quantitative Bio-Analysis Using micro-LC TOF and micro-LC MS/MS

Gunnar Stenhagen Stenhagen Analyslab AB Mölndal

Twelve Principles of Green Chemistry

1. **Prevention** It is better to prevent waste than to treat or clean us waste after it has been created. 2. Atom Economy Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product. 3. Less Hazardous Chemical Synth Wherever practicable, synthetic m d be designed to use and generate substances that possess little or shou no toxicity to human health and the nvironment. **Designing Safer Chemicals** 4. Chemical products should be designed to effect their desired function while minimizing their toxicity. 5. Safer Solvents and Auxiliaries The use of auxiliary substances (e.g., solvents, separation agents, etc.) should be made unnecessary wherever possible and innocuous when us 6. **Design for Energy Efficiency** Energy requirements of chemical processes should be recognized for their environmental and economic impacts and should be minimized. If possible, synthetic methods should be conducted at ambient temperature and pressure. Use of Renewable Feedstocks 7. A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable. 8. **Reduce Derivatives** Unnecessary derivatization (use of blocking groups, protection/ deprotection, temporary modification of physical/chemical processes) should be minimized or avoided if possible, because such steps require additional reagents and can generate waste. 9. Catalysis Catalytic reagents (as selective as possible) are superior to stoichiometric reagents. 10. **Design for Degradation** Chemical products should be designed so that at the end of their function they break down into innocuous degradation products and do not persist in the environment. **Real-time analysis for Pollution Prevention** 11. Analytical methodologies need to be further developed to allow for real-time, in-process monitoring and control prior to the formation of hazardous substances. Inherently Safer Chemistry for Accident Prevention Substances and the form of a substance used in a chemical process should be chosen to minimize the potential for 12. chemical accidents, including releases, explosions, and fires.

Stenhagen Analyslab AB

* Anastas, P. T.; Warner, J. C.; Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998.

Green carbon dioxide Cycle time 1, 80, 500 year Straw, wood, peat etc

VS

Black carbon dioxide

Cycle time 1000-100000 year Brown coal, coal, oil LCMS vs Green Chemistry

Prevent waste

Safer Solvents and Auxiliaries

Real-time analysis for Pollution Prevention

Inherently Safer Chemistry for Accident Prevention

Conventional LC-ESI mass spectrometers

(flow rates from 0.5 mL/min to 2 mL/min)

To handle these high flow rates, most commercial ESI sources for mass spectrometers use pneumatic assistance for aerosol generation.

At these high flow rates, the mass spectrometer inlet samples typically less than 0.1% of the total aerosol produced.

A great deal of the sample is "wasted" because it does not contribute to ion current.

When the flow rate is **reduced** to much lower flow rate:

- Droplet formation occurs more readily, requiring only the applied voltage to generate spray.
- No sheath gas or additional heat is required.
- The stability of spray, and therefore the signal, at the lower flow rates is typically improved for aqueous or "salty" mobile phases.
- Low flow ESI is especially tolerant to a wide range of liquid compositions
- Can even spray "pure" water with a high degree of stability.

Electrospray ion current

$$I = \beta(\varepsilon) \left(\frac{Qk \gamma}{\varepsilon}\right)^{1/2}$$

Derived through a dimensional analysis of the charge transport process

- I total spray current or total excess charges in the electrospray process
- k electric conductivity of the liquid
- Γ surface tension of the liquid
- ε dielectric constant of the liquid
- $\beta(\varepsilon)$ experimentally determined coefficient
- Q liquid flow rate.

$$I_{\mathcal{J}} = eA_{V}Q_{z=1}^{i(\mathcal{J})} zf_{z,\mathcal{J}}X_{\mathcal{J}}$$

When all molecules of a compound J are completely ionized

- I_J total ion current corresponding to compound J
- X_J molar concentration
- *e* electron charge (1.6x10–19 Coulomb)
- A_V Avogadro's number
- $f_{z,J}$ fraction of compound J molecule ions carrying z charges
- i(J) maximum charge carrying capacity of the compound J ions.

Charge Competition and the Linear Dynamic Range of Detection in Electrospray Ionization Mass Spectrometry **Keqi Tang, Jason S. Page, and Richard D. Smith**

J Am Soc Mass Spectrom. 2004 October ; 15(10): 1416–1423.

 $I_A = eA_V Q \sum_{\mathcal{J}=1}^N (\sum_{z=1}^{i(\mathcal{J})} z f_{z,\mathcal{J}} X_{\mathcal{J}})$

When all analytes are ionized, represents an ideal condition in the electrospray ionization process

 $I = \beta(\varepsilon) \left(\frac{Qk \gamma}{\varepsilon}\right)^{1/2}$

total spray current or total excess charges in the electrospray process

ESI capacity model

$$C_{i} = \frac{I}{I_{A}} = \frac{\beta(\varepsilon)}{eA_{V} \sum_{J=1}^{N} (\sum_{z=1}^{i(J)} z f_{z,J} X_{J})} \cdot \left(\frac{k\gamma}{\varepsilon Q}\right)^{\frac{1}{2}}$$

C_i electrospray ionization charge capacity for a solution

Ci >>1, the sample solution is sufficiently dilute compared to the available excess electrospray charge. Here, ESI charge competition is expected to be negligible and the *ESI-MS response is linear with concentration for each compound in the mixture.*

 $Ci \sim 1$, the total excess charge becomes comparable to the total number of analyte ions formed by ESI. ESI charge competition in this case is expected to be important. Compounds with different ionization efficiencies will have different MS responses. This can result in the *different dynamic ranges for compounds in mixtures*, as discussed below, and even the failure to detect some species in mixtures.

Ci<<1, the MS response is expected to be substantially *independent of sample concentration* (i.e. saturated).

ESI capacity model

$$C_{i} = \frac{I}{I_{A}} = \frac{\beta(\varepsilon)}{eA_{V} \sum_{J=1}^{N} (\sum_{z=1}^{i(J)} z f_{z, J} X_{J})} \cdot \left(\frac{k\gamma}{\varepsilon Q}\right)^{\frac{1}{2}}$$

 C_i is inversely proportional to the square root of the electrospray flow rate Q.

This implies that a smaller electrospray flow rate can provide a **wider linear dynamic range**.

Operating in the low flow electrospray mode will not only **increase the upper limit** of the linear dynamic range, as indicated by eq., but also **decrease the lower concentration limit**, which is essentially determined by the detection capabilities of the mass spectrometer.

Micro-LC

- Micro-LC refers to LC using columns whose inner diameter is ≤ 0.5 mm, commonly 0.3 mm.
- Conventional LC uses columns that are 2.1–4.6 mm in diameter.

Plumbing

To take advantages of the inherent benefits of micro-LC the instrument must have very little dispersion, i.e. extra volume

- Injector
- Interconnecting tubing from injector to column
- Column
- Interconnecting tubing from column to ion source
- Fitting and frits
- Ion souce

Band-broadening are independent of each other and the peak variance:

$$\sigma^{2} = \sigma_{inj}^{2} + \sigma_{col}^{2} + \sigma_{tubing}^{2} + \sigma_{fittings}^{2} + \sigma_{ion-source}^{2}$$

Detector response at different flow rates 100 nM AZcomp 1 µL inj on Halo C18 0.3x50mm column Mobile phase: 75% Acn/H2O

Detector response at different flow rates 100 nM AZcomp 1 µL inj on Halo C18 0.3x50mm column Mobile phase: 75% Acn/H2O

Need accurate gradient at low flow rate

LC gradient system Eksigent ExpressHT

Gradient control

Stenhagen Analyslab AB

GS 2008

Sensitivity dependent on eluent composition and flow rate

Acquity BEH C18 1.7µm 1x50 mm, flow rate 70-200µL/min, gradient 5-95% Acetonitril/water in 2 min

1% change in acetonitril/water composition give 5% larger peak area Gradient performance are important!

Mass chromatogram (repeated) of control substances

Different eluent flow rates, same solvent composition

Xbridge C18 2.5µm 2.1x20 mm, Flow 700µL/min, Inj: 5µL

Halo C18 0.3x50 mm, Flow 20µL/min, Inj: 1µL

Sample preparation

Sample preparation

Protein Precipitation (PPT)

- Aliquot of sample
- Add cold acetonitrile spiked with internal standard
- Vortex
- Centrifuge (20min)
- Remove supernatant
- Reconstitute
- Transfer to plate
- Inject onto LC column

Micro-LC vs LC on QQQ

µLC analytical method

Conventional LC analytical method

Mass spectrometer:	Waters Quattro Premier	Mass spectrometer:	Waters Quattro Premier
LC gradient system:	Eksigent ExpressHT	LC gradient system:	Shimadzu LC10 AD
Gradient:	2-70% Acetonitrile/H2O in 2min	Gradient:	5-95% Acetonitrile/H2O in 1.5 min
Auto sampler:	CTC/PAL	Auto sampler:	CTC/PAL
LC column:	Eclips XDB -C18 3.5µm 1x50mm	LC column:	Halo C18 2.7µm C18 2.1x30mm
Column temp.	20 C	Column temp.	20 C
Mobile phase flow:	40 μl/min	Mobile phase flow:	700 μl/min
Injection volume:	1 µl	Injection volume:	1 µl

Same QQQ tune settings

Individual plasma concentration after oral dose in rats wit micro- and nano suspension

7

Quantitative Bio-Analysis Using Micro-LC and Time of Flight MS

GS 2010

5

Pen-TOF (PerkinElmer)

William Penn on top of Philadelphia city hall

PenTof with microLC

Resolution

Quarters for the night, remote birds 2 km Nikon 500/4 1/100s

11

Selectivity

Selectivity by narrow mass window

Mass window 40mDa

Mass window 400mDa

Sensitivity by trap enhencement, 5 times

🖶 Aviator - Acc_Speed3 20100503_100704 inj005.tofdata

_ 8 ×

- D ×

Curve 1

_ 8 ×

File View Evaluation Peak List Windows Help

24-Peptide in buffert

Halo C18 p 0.3x150mm, 10µl/min, 39-95% Acn/H2O 0.2% FA 10min, 1µl inj

Conventional LC 0.6 mL/min TOF-MS

Micro LC 10μ L/min TOF MS

Scan speed

M.G. TD 2-seat Sports 1952 British racing green or BRG

Scan speed

Column: Halo C18 50x0.3mm, 20µl/min

Linear Dynamic Range

AZComp (brain) Halo C18 50x0.3mm 20µL/min

Linear Dynamic Range

Sample preparation 2

squirre

GS 2010

Peptide Sample Preparation

Protein Precipitation (PPT)

- Aliquot of sample
- Add cold ethanol spiked with internal standard
- Vortex
- Centrifuge (20min)
- Remove supernatant
- Reconstitute
- Transfer to plate
- Inject onto LC column

4850 Da Peptide

Mass spectrum

Mass chromatogram (0.3x50mm LC column)

Calibration curve (CSF)

Linear Dynamic Range

5 – 32 000 nM

10 -20 000 nM

Mass chromatogram of H-peptide (stability in plasma)

Cysteinylation* of peptide in plasma

*This was confirmed by adding DTT to plasma

Protein Precipitation (PPT) of Peptide Sample with Heavy Metal

Buffer

Acetonitrile

EIC

3.08 Mir

m/z (611.673:611.88

읭 500

Coted BT (min) A

Export

Close

_ @ ×

_ 🗆 🗵

Curve 1

ZnSO₄

50µL Buffer 100nM peptide Add 150µL 33% acetonitrile Vortex Inject onto LC column 50µL Plasma 100nM peptide Add 150 µL cold acetonitrile Vortex Centrifuge (20min) Remove supernatant Reconstitute Transfer to plate Inject onto LC column

3.0 3.5 4.0

4.5 5.0 5.5 6.0

50µL Plasma 100nM peptide Add 25µL 5% Ammonium hydroxide and 125µL 10% ZnSO4 Vortex Centrifuge (20min) Remove supernatant Reconstitute Transfer to plate Inject onto LC column

PPT Acetonitril

PPT ZnSO₄

14kDa peptide

Background PPT

PPT Acetonitril

Less acetonitrile concentration in final sample eliminate risk for pre-elution at relative large injection volume

Conclusion

Conclusion quantification with TOF-MS

Advantage

No optimization needed High speed of analysis Large dynamic range Linear calibration curves Accurate mass measurement Accurate isotopic pattern Mass spectral data saved

Disadvantage

Large amount of data collected

Less selective than e.g.. MRM

Consequence

Easy to set up High analytical capacity Dilution of sample can be avoided The simplest model is preferred Safe identification of component Useful for interpretation Possibility for later evaluation

Need for efficient data handling and storage Need for high chromatographic performance and reproducible retention times

Conclusion Micro-LC

Advantage

High chromatographic performance Large dynamic range Rapid eluent mixing and fast gradients High mass sensitivity Compact instrument set up Low eluent consumption / waste generation* Protein precipitation with ZnSO₄

Disadvantage

Low dead (delay) volumes critical Narrow tubings and fittings

Consequence

Very complex sample can be analyzed Dilution of sample can be avoided Reproducible retention times Reduced sample size Less space requirements Less contamination of ion source No organic solvent in sample solution

Short distances before and after column Risk for clogging

* Green HPLC

Employing 0,3 mm ID columns saves up to 98% of the solvent compared with using 2.1 mm ID columns.

(600 L/year reduced to 12 L/year)

The End